
1 
 

Employing Automated Electrical Resistivity Tomography for 

detecting short- and long-term changes in permafrost and active 

layer dynamics in the Maritime Antarctic 

Mohammad Farzamian1,2, Teddi Herring3, Gonçalo Vieira2, Miguel Angel de Pablo4, Borhan 

Yaghoobi Tabar5, and Christian Hauck6  5 

 
1Instituto Nacional de Investigação Agrária e Veterinária, 2780-157 Oeiras, Portugal 

2Centre for Geographical Studies, Associate Laboratory TERRA, IGOT, Universidade de Lisboa, Lisbon, Portugal 

3Department of Civil Engineering, University of Calgary, Canada 

4Unidad de Geología, Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain,  10 

5School of Mining, Petroleum and Geophysics, Shahrood University of Technology, Shahrood, Iran 

6Department of Geosciences, University of Fribourg, Fribourg, Switzerland 

 
Correspondence to: Mohammad Farzamian (mohammad.farzamian@iniav.pt)  

 15 

 

 

 

 

 20 

 

 

 

 

 25 

 

 

 

 

 30 

 

 

https://doi.org/10.5194/egusphere-2023-2908
Preprint. Discussion started: 8 January 2024
c© Author(s) 2024. CC BY 4.0 License.



2 
 

Abstract 

Repeated electrical resistivity tomography (ERT) surveys can substantially advance the understanding of spatial and 

temporal freeze-thaw dynamics in remote regions, such as Antarctica, where the evolution of permafrost has been 35 

poorly investigated. To enable the time-lapse ERT surveys in Antarctica, however, an automated ERT (A-ERT) 

system is required, as regular site visits are not feasible. In this context, we developed a robust A-ERT prototype and 

installed it in the Crater Lake CALM-S site at Deception Island, Antarctica to collect quasi-continuous ERT 

measurements. To efficiently process a large number of obtained A-ERT datasets, we developed an automated data 

processing workflow to efficiently filter and invert the A-ERT datasets and extract the key information required for a 40 

detailed investigation of permafrost and active layer dynamics.  

In this paper, we report on the results of two complete year-round A-ERT datasets collected in 2010 and 2019 at Crater 

Lake CALM-S site and compare them with available climate and borehole data. The A-ERT profile has a length of 

9.5 m with an electrode spacing of 0.5 m, enabling a maximum investigation depth of approximately 2 m. Our detailed 

investigation of the A-ERT data and inverted modeling results shows that the A-ERT system can detect the active-45 

layer freezing and thawing events with very high temporal resolution. The resistivity of the permafrost zone in 2019 

is very similar to the values found in 2010, suggesting the stability of the permafrost over almost one decade at this 

site. The evolution of thaw depth exhibits also a similar pattern in both years, with the active layer thickness fluctuating 

between 0.20- 0.35 m. However, a slight thinning of the active layer is evident in early 2019, compared to the 

equivalent period in 2010.  50 

These findings show that A-ERT, combined with the new processing workflow that we developed, is an efficient tool 

for studying permafrost and active layer dynamics with very high resolution and minimal environmental disturbance. 

The ability of the A-ERT setup to monitor the real-time progression of thaw depth, and to detect brief surficial 

refreezing and thawing of the active layer reveals the significance of the automatic ERT monitoring system to record 

continuous resistivity changes. This shows that the A-ERT setup described in this paper can be a significant addition 55 

to the Global Terrestrial Network for Permafrost (GTN-P) and the Circumpolar Active Layer Monitoring (CALM) 

networks to further investigate the impact of fast-changing climate and extreme meteorological events on the upper 

soil horizons and work towards establishing an early warning system for the consequences of climate change.  
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1 Introduction 65 

Antarctica is home to 90% of the world's ice, making it a crucial influencer of the Southern Hemisphere and global 

atmospheric and cryospheric systems (Bockheim, 2004). An understanding of the distribution and properties of 

Antarctic permafrost is essential for the cryospheric sciences, but also for ecology and biological sciences, since it 

will be a major control on ecosystem modification following climate-induced changes (Vieira et al., 2010). Despite 

its significance and compared with other components of the cryosphere, our understanding of Antarctic permafrost 70 

and its response to global change remains limited (Biskaborn et al. 2019, Hrbacek et al., 2023). This gap in permafrost 

knowledge holds true for much of Antarctica, excluding, perhaps, the McMurdo Dry Valleys (MDV), which have 

been the focus of substantial research efforts for several decades (Vieira et al., 2010). Systematic investigations on 

permafrost are less common in other Antarctic regions, and the majority of studies have been conducted in the vicinity 

of research stations. The harsh climate, environmental conditions, remoteness, and logistical difficulties and expenses 75 

impose limitations on permafrost research in Antarctica (Hrbacek et al., 2023). 

In the framework of the Global Terrestrial Network for Permafrost (GTN-P), three critical permafrost parameters have 

been designated as Essential Climate Variables (ECVs) by the Global Climate Observing System (GCOS) of the 

WMO: i. the Active Layer Thickness (ALT), representing the annual thaw depth above permafrost, with a primary 

focus on data gathered from the Circumpolar Active Layer Monitoring (CALM) network (Brown et al., 2000); ii. the 80 

Thermal State of Permafrost (TSP), encompassing permafrost temperature, systematically observed through an 

extensive network of boreholes over the long term (Biskaborn et al., 2019); and iii. The recently approved Rock 

Glacier Velocity, focuses on the movement of these prominent geomorphological features, especially in mountain 

permafrost environments (RGIK, 2023).  

Information on the spatial variability of the ALT in Antarctica primarily stems from monitoring sites under the CALM-85 

South (CALM-S) program. However, beyond the logistical difficulties and as well discussed by Hrbacek et al. (2023), 

the establishment of a CALM-S site in Antarctica faces additional challenges arising from the adverse ground surface 

conditions such as extensive bedrock outcrops and block fields, as well as mountainous terrains. These conditions 

hinder mechanical probing and accurate spatial measurements of ALT. Moreover, mechanical probing lacks the 

capability for real-time monitoring of thaw depth, as it is typically performed only once a year, frequently missing the 90 

date of maximum thaw depth. Monitoring of the TSP is also limited in Antarctica, especially concerning depths below 

the zero annual temperature amplitude, mainly due to logistical and technical constraints (Biskaborn et al., 2019). 

Furthermore, boreholes record data about discrete ground properties only in one dimension, rendering them 

impractical for comprehensive coverage. In the context of Antarctic research, logistical and technical constraints and 

ecologically sensitive ecosystems further discourage the use of invasive methodologies like boreholes (Farzamian et 95 

al., 2020). 

In light of these challenges, non-invasive geophysical techniques like Electrical Resistivity Tomography (ERT) 

emerge as a promising avenue to tackle some of these issues. ERT has become a standard tool in permafrost research 
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due to its capability to detect and monitor permafrost and active layer dynamics in two or three dimensions, leveraging 

the distinct contrast in electrical resistivity between frozen (more resistive) and unfrozen (more conductive) materials 100 

(Herring et al., 2023). Variations in resistivity between repeated ERT surveys are widely used to monitor the dynamics 

of the active layer, permafrost temperature, and unfrozen water content (Krautblatter et al., 2010; Oldenborger and 

LeBlanc, 2018). In this context, time-lapse ERT is an increasingly-used tool for exploring permafrost-climate 

interactions and providing insights into how evolving climatic conditions influence permafrost over varying time 

scales, spanning decades in some cases (Mollaret et al., 2019; Buckel et al., 2022; Etzelmüller et al., 2020; Scandroglio 105 

et al., 2021). However, in the vast majority of cases, the ERT surveys are operated manually, necessitating frequent 

on-site visits which can be logistically complex and expensive. 

Recent advances in instrumentation have enabled automated ERT (A-ERT) data collection in permafrost 

environments, eliminating the need for repeated site visits. A-ERT equipment has been installed at several sites in the 

European Alps (e.g., Hilbich et al., 2011; Keuschnig et al., 2017) and more recently in the Arctic (e.g., Uhlemann et 110 

al., 2021; Tomaškovičová and Ingeman-Nielsen, 2023) to monitor changing permafrost conditions. Farzamian et al. 

(2020) introduced a simple and robust A-ERT system for continuous permafrost monitoring in Antarctica. This 

prototype A-ERT system is low-cost, low power, automated, and can be operated with high temporal frequency, 

enabling the study of the impacts of short-term meteorological events on permafrost terrain, such as infiltration 

processes in the active layer. The prototype was installed at Deception Island, and tested for year-round operation in 115 

2010 (see Farzamian et al., 2020). More recently, in 2019, the authors upgraded and reinstalled the A-ERT system to 

study the active layer and permafrost conditions after almost one decade and to further evaluate the potential of its 

application for permafrost studies in remote areas. 

This recent development of A-ERT prototypes presents a new challenge for efficiently processing and inverting large 

volumes of datasets while extracting essential information from the A-ERT data. In our case, with over 1400 datasets 120 

per year, it is not feasible to manually filter and quality control each individual dataset, implying the development of 

automated data filtering and inversion procedures. This need will become even more critical in future as the number 

of A-ERT systems deployed increases, as new long-term monitoring projects are planned to span decades or more. 

Currently, available commercial and open-source software lacks adequate built-in filtering tools and inversion 

protocols for A-ERT data with a large number of repetitions. Therefore, establishing a suitable automated data 125 

processing tool becomes increasingly important.  

This manuscript has, therefore, three objectives: (1) to present the details of the new A-ERT set-up and data collected 

at Deception Island in 2019, (2) to describe a new semi-automated processing workflow and show how it efficiently 

filters and inverts a large number of  ERT datasets, extracting the key information required for detailed assessment of 

permafrost and active layer dynamics, (3) to compare the resistivity models obtained in 2019 with those from 2010 130 

(the latter having been presented in Farzamian et al. (2020)), in combination with climate, borehole and soil probing 

data to assess the active layer and permafrost conditions after almost one decade. The A-ERT data and plots, as well 
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as the companion Jupyter Notebook used to process the A-ERT data, are available at 

https://github.com/teddiherring/AERT. 

2 Material and Methods 135 

2.1 Study area and monitoring setup at Crater Lake CALM-S   

Deception Island, situated approximately 100 km north of the Antarctic Peninsula in the Bransfield Strait, is part of 

the South Shetlands archipelago (Fig. 1). The island is an active stratovolcano with a horseshoe-shaped rim and a 

diameter of 15 km, with a 9 km diameter caldera open to the sea and a maximum elevation at Mount Pond (539 m) 

(Prates et al., 2023). Around 57% of Deception Island is covered by glaciers, while about 47 km2 is glacier-free 140 

(Smellie and López-Martínez, 2002). The climate of Deception Island is cold-oceanic, characterized by frequent 

summer rainfalls and a moderate annual temperature range. Mean annual air temperatures near sea level hover around 

-3 °C. The weather conditions are heavily influenced by polar frontal systems, resulting in highly variable atmospheric 

circulation, including the possibility of winter rainfall, as well as summer snowfall (Styszynska, 2004). Deception 

Island is formed by the intercalation of lava flows, pyroclastic deposits, and ash. Many of the island's present-day 145 

glaciers are ash-covered, resulting from eruptions in 1967, 1969, and 1970. These eruptions buried the snow mantle, 

with remnants of buried snow still present in some areas outside the glacier areas. The deposits on the island are highly 

porous and insulating, with a significant ice content at the permafrost table. The active layer is thin, varying from 0.25 

to 1 m depth across different soils and boreholes show the presence of warm permafrost (Bockheim et al., 2013; 

Ramos et al., 2017; de Pablo et al., 2020). 150 

The study site, Crater Lake CALM-S, is located on a small, relatively flat plateau-like surface covered with volcanic 

and pyroclastic deposits. Positioned at an altitude of 85 m above sea level, it lies north of Crater Lake (62°59′06.7″ S, 

60°40′44.8″ W). The selection of this site was based on its flat characteristics, absence of summer snow cover, a 

considerable distance from known geothermal anomalies, exposure to regional climate conditions, and proximity to 

the Spanish station Gabriel de Castilla. The ground surface at the Crater Lake CALM-S site is devoid of vegetation, 155 

and the mean annual air temperature (MAAT) recorded between January 28, 2009, and January 22, 2014, was -3.0 

°C. Permafrost temperatures range from -0.3 °C to -0.9 °C, with spatial variations in permafrost thickness ranging 

from 2.5 to 5.0 m (Vieira et al., 2008; Ramos et al., 2017). The active layer thickness varies from 25 to 40 cm (Ramos 

et al., 2017), and is related to differences in surface deposits and snow cover. 

The Crater Lake CALM-S site comprises a 100×100 m grid with 121 nodes for mechanical probing spaced at 10 m 160 

intervals as shown in Fig. 1. It was established in January 2006 and has undergone several upgrades since its 

installation. The site includes the monitoring of air temperature, active layer and permafrost temperatures, active layer 

thickness, and snow thickness. Air temperature has been monitored since 2009 by using a Tinytag Plus 2 logger device 

by Gemini, with PT100 external temperature probe inserted into a Solar Radiation Shield installed on a mast at 160 

cm above the ground. Data is recorded hourly with a resolution of 0.01 ºC and an accuracy of 0.04 ºC. Ground 165 

temperatures are monitored in the shallow borehole at node 3,3 of the CALM Site (S3,3), down to 160 cm. This 
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borehole, cased with air-filled PVC pipe, contains an array of DS1922L iButton miniature temperature logger by 

Maxim at depths of 2.5, 5, 10, 20, 40, 80, and 160 cm to measure ground temperature with a resolution of 0.0625 ºC 

and an accuracy of 0.5 ºC. Snow thickness estimation is calculated using near-surface air temperature DS1922L 

iButton sensors installed on a vertical wood stake at heights of 2.5, 5, 10, 20, 40, 80, and 160 cm above the ground 170 

(de Pablo et al., 2016). Snow thickness is derived considering the changes in the thermal behavior of consecutive 

temperature devices along the mast when snow covers/uncovers one sensor, following the classical method 

(Lewkowicz, 2008). Manual measurements of thaw depth are conducted annually in the summer, covering 121 nodes 

spaced at 10 m intervals (Ramos et al., 2017). 
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 175 

Figure 1: Location of the A-ERT setup at Crater Lake CALM-S site in Deception Island. The A-ERT box casing the 

4POINTLIGHT_10W resistivity meter instrument, solar-panel-driven battery, and multi-electrode connectors [A]; 

electrodes were buried in the ground and were connected to the cables [B]; solar panels [C] Complementary environmental 

parameters are monitored close to the A-ERT profile at node (3,3) of the CALM's grid, including borehole ground 

temperatures [D], snow thickness [E], and air temperature [F]. 180 
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2.2 A-ERT monitoring setup  

The A-ERT system, originally deployed in 2010 (see Farzamian et al., 2020), was upgraded and reinstalled in February 

2019 for long-term quasi-continuous monitoring along the same transect in the vicinity of the ground temperature 

borehole S3,3. The same survey parameters were used to collect A-ERT data in 2010 and 2019, enabling comparison 

of the two datasets. A-ERT surveys were performed using the Wenner electrode configuration for optimized energy 185 

consumption and higher vertical resolution to best differentiate the active layer-permafrost boundary (Loke, 2002). 20 

electrodes with a spacing of 0.5 m were installed at the site, yielding 56 individual data points for each monitoring 

data set at six data levels. The measurements started in February 2019 and were repeated every 6 hours. The 

measurements were stored in the internal memory of 4POINTLIGHT_10W device. This study focuses on A-ERT data 

collected from February 2019 to February 2020, offering a year-round dataset showcasing the A-ERT data variability 190 

and allowing for a comparison with the original A-ERT dataset from 2010. Mechanical probing before the A-ERT 

installation in 2019 and after data download in 2020 allows also for a comparison with ALT data derived from 

mechanical probing. 

2.3 A-ERT data processing 

ERT data can be susceptible to various sources of noise, such as poor galvanic contact, random errors, and polarization 195 

effects. In our setup, poor galvanic contact and the measurement of high resistivities at very low currents are 

considered to be the dominant sources of error. To improve the quality of the data and identify and filter out poor 

quality measurements, we collected between 5 and 9 stacked measurements per data point with a target standard 

deviation of 2%. While stacking variance can be useful for identifying bad measurements, we observed that it is 

possible for outlier measurements to have low stacking errors. This suggests that relying solely on stacking error is 200 

ineffective for data processing, as has been discussed by other authors (e.g., Tso et al., 2017). Therefore, additional 

filtering is necessary to automatically identify and remove poor-quality data. Automated data filtering workflows are 

particularly valuable in our setup, where the large number of datasets per year make manual data checking and filtering 

impractical. 

Following the automated data filtering routine outlined by Herring et al. (2023), we implemented a series of filtering 205 

steps. Each filtering step required quantitative thresholds of data quality, which were determined empirically by 

iteratively testing the filtering algorithm on random subsets of the data and selecting thresholds that worked well for 

all datasets. In the first filtering step, we removed data points where the injected current, voltage, or apparent resistivity 

was less than or equal to 0, data points with a stacking error greater than 2%, and measurements with anomalously 

high apparent resistivity, defined as values greater than 9 times the standard deviation of the entire technically filtered 210 

dataset. This removal of physically unrealistic values is a reasonable data filtering step for any site. Next, in Step 2, 

the moving median filter calculated a moving median of logarithmic apparent resistivities along each depth level in 

the pseudosection, using a window of 5 data points (except at the edges of the pseudosection, where a smaller window 

was necessary). Data points that deviated from the moving median by more than 7% were removed. We also 

introduced a filtering step (Step 3) that identified "bad" electrodes by evaluating how many data points associated with 215 

https://doi.org/10.5194/egusphere-2023-2908
Preprint. Discussion started: 8 January 2024
c© Author(s) 2024. CC BY 4.0 License.



9 
 

a particular electrode were removed in the previous steps. If more than 25% of the data points measured by an electrode 

were removed, all the remaining data points from that electrode were discarded. Finally, in Step 4, any datasets where 

more than 30% of the data had been filtered in the previous steps were considered of poor quality and were not 

inverted, as the results would be too unreliable in a time-lapse modeling context. 

Figure 2 shows an example of the application of a multi-step data processing workflow. Although the majority of 220 

datasets collected in 2010 and 2019 exhibit excellent quality, the presented example serves for illustrative purposes to 

demonstrate the functionality of the filtering scheme. Fig. 2a represents the original data, while Figs. 2b-d display the 

filtered data after each step of the process. Through this multi-step data processing workflow, poor quality 

measurements and anomalous data points were effectively eliminated, showcasing the effectiveness of the filtering 

procedure. This workflow was automated and applied to all datasets, enabling rapid and efficient identification and 225 

elimination of problematic data based on the same qualitative criteria. For other sites and applications, each step should 

be tested and threshold values adjusted as needed, as optimal values (specifically for steps 2-4) depend on the site 

conditions and data quality. 

 

Figure 2: Multi-step data filtering to remove noisy data points: (a) field measurements; (b) data after application of filtering 230 

step 1 (removal of measurements that were <= 0, had poor repeatability, or were outliers relative to the rest of the dataset); 

(c) data after application of filtering step 1 and step 2 (moving median filter); and (d) data after the application of filtering 

step 1, step 2, and step 3 (bad electrode filter). 
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2.4 ERT data inversion and analysis  235 

Following the data filtering, all data were inverted using pyGIMLi, an open-source software package for geophysical 

modeling and inversion (Rücker et al., 2017). An L1 or “blocky” model norm was used due to its ability to better 

resolve sharp boundaries and large resistivity contrasts (Loke et al., 2003), like those expected between the thawed 

surface layer and the frozen ground beneath. The regularization parameter was optimized by L-curve using a built-in 

pyGIMLi function (Günther et al., 2006). A simple noise model was created with 4% relative noise and a small noise 240 

floor. The starting model was set to a homogenous model of the average apparent resistivity for the first dataset in 

each monitoring period, while subsequent inversions used the previous inverted model (i.e., a “cascaded” inversion 

approach). The inversion proceeded until chi2 was equal to 1 (i.e., the data were fit to within the assumed noise levels), 

a maximum number of iterations was reached (here set to 20 iterations), or the inversion converged (here taken to be 

when the objective function changed by less than 1% between iterations). 245 

After inversion, several analyses were conducted in order to extract the key information required for a detailed 

investigation of permafrost and active layer dynamics. Similar to Farzamian et al. (2020), inverted resistivities were 

plotted for a virtual borehole in the center of the profile, close to the existing borehole S3,3, enabling easy visualization 

of temporal patterns and comparison of inverted resistivities of A-ERT data from 2019 to 2010. This virtual borehole 

analysis is also used to compare the A-ERT results to the corresponding temporal borehole thermal variations obtained 250 

from S3,3. In addition, the model coverage, derived from the Jacobian and calculated with a built-in pyGIMLi function, 

was used to estimate the model sensitivity in order to assess the reliability of the models. 

To delineate the active layer and permafrost and to map the progression of thaw depth, we used the vertical resistivity 

gradients method. This method is a reliable way to map structurally simple unfrozen/frozen interfaces (Herring and 

Lewkowicz, 2022) due to their large resistivity contrast. At Crater Lake the presence of an ice-rich top of permafrost 255 

layer improves this approach, since it results in a very high resistivity contrast. Thaw depths were only interpreted 

when the near-surface resistivity was low (i.e. unfrozen). The results were then compared to the manual probing data 

and borehole temperatures. Furthermore, to facilitate assessment of temporal resistivity changes in the permafrost 

zone, a zone of interest was delineated near the center of the resistivity model from 2-7.5 m along the survey and 0.5-

1.5 m depth. This zone of interest represents a well-resolved zone of the permafrost (i.e., beneath the permafrost table 260 

and in a region of higher sensitivity away from the edges of the model). Similar methodologies to examine resistivity 

in a zone of interest have been applied in previous studies (e.g., Etzelmüller et al., 2020; Kneisel et al., 2014; Mollaret 

et al., 2019). 

3 Results  

3.1 Analysis of observational data 265 

Figure 3 shows snow cover thickness, air, and borehole temperature variations during the A-ERT monitoring periods 

in 2010 and 2019, observed close to the middle of the A-ERT transect (see Fig.1 for the locations of sensors and A-

ERT profile). Snow cover during winter was generally thin, with only 5 to 30 cm thickness and frequent snow-free 
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periods (Fig. 3a). The number of days with snow cover was lower in 2019 (85 days) compared to 2010 (118 days).  In 

addition, the snow thickness was also thinner in general in 2019 and the difference became more evident during 270 

October, which showed either snow-free or very thin (i.e. less than 5 cm) snow cover in 2019. The air temperature 

fluctuation (Fig. 3b) is very similar in 2010 and 2019, ranging from -13.8 to 2.8 °C in 2010 and from -13.9 to 2.8 °C 

in 2019. The mean annual air average temperature is slightly lower in 2019 (-2.9 °C vs -2.3 °C in 2010) and the 

standard deviation was also slightly higher in 2019 (3.4 °C vs 3.2 °C in 2010), suggesting 2019 was a slightly colder 

year with slightly larger temperature fluctuations at this site. Air and shallow ground temperature are generally well-275 

coupled when there is no snow cover and with a slight phase lag when snow is present. 

The ground temperature at three depths (5, 20, and 80 cm) is shown in Fig. 3c-e for the node at S3,3. Temperature 

fluctuates significantly at shallower depths (i.e., within the active layer) during the year, with  temperatures at 5 cm 

depth ranging from -7.5 to 2.1 °C and -8.6 to 3.1 °C in 2010 and 2019 respectively and  from -6 to 0.5 °C and -7.1 to 

1 °C at 20 cm depth in 2010 and 2019, respectively, reflecting the snow cover variability and air temperature 280 

fluctuations. The average ground temperature at these depths was slightly colder (i.e., 0.1°C) in 2019 compared to 

2010. Active layer freezing started in mid-April in 2010 and in mid-May in 2019, showing a delay of about one month 

between 2010 and 2019. Due to the thin snow cover during freezing, and its late onset, as well as the lack of significant 

soil moisture, no zero-curtain is evident in either year. In contrast, there is a zero-curtain phase of almost one month 

during the thawing season starting from mid-October in both years. During both years and apart from seasonal freezing 285 

and thawing, brief and superficial changes of the ground temperature around 0 ºC are very frequent. These short-lived 

meteorological events were already discussed by Farzamian et al. (2020). Similar surficial refreezing events can be 

also identified in 2019 in April and May.  

Temperature fluctuations at the deeper layers (i.e. 80 cm), just below the permafrost table show smaller amplitudes 

ranging from -3.9 to close to 0 °C in both years (Fig. 3e). While the temperature range of the permafrost is similar 290 

between the two years, permafrost is slightly warmer during the first nine months of the year in 2019 and then slightly 

colder during the last three months. These small differences can be attributed to air temperature and snow cover 

differences, such as the cold event in early October 2019 that penetrated deeper in the absence of snow cover, leading 

to slightly lower temperatures in the last three months of 2019.  

 295 
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Figure 3: Comparative plots of 2010 and 2019: daily snow cover depth (a); air temperature (160 cm above the surface) (b); 

and ground temperatures at 5 cm (ground surface) (c); 20 cm (active layer) (d); and 80 cm (permafrost) depths (e).  
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3.2 Temporal variability of apparent resistivity data 

Overall, the A-ERT data in both years exhibited high quality, with less than 1% of data points being removed by 300 

filtering and less than 0.5% of A-ERT datasets being discarded due to poor quality (Fig. 4). Almost all of the discarded 

datasets were from the winter when the active layer is frozen and contact resistances at the electrodes are high. After 

processing and filtering the measurements, the mean daily apparent resistivity (ρa) values for each data level between 

2010 and 2019 were plotted (Fig. 5).  

 305 

 

Figure 4: Data points removed using the automated data filtering routine for 2010 (top) and 2019 (bottom). Overall, less 

than 1% of the data were removed. 

In general, there is good agreement between the apparent resistivity data from 2010 (ρa2010) and 2019 (ρa2019), both 

during winter and summer. The shallow data, corresponding to electrode spacings of 0.5 m and 1 m and investigation 310 

depths of ~0.25 and 0.5 m, exhibit the highest temporal variability in both years, as these measurements are more 

influenced by significant resistivity changes during phase change processes (i.e., freeze and thaw events within the 

active layer) which are more frequent close to the ground surface. In mid-April, the ρa2010 data for 0.5 m and 1 m 

electrode spacing experience a sharp rise in apparent resistivity within a two-week period, starting from values below 

20 kΩ.m and exceeding 500 kΩ.m by early May, indicating the onset of the seasonal freezing. ρa2019 data show a 315 

similar sharp rise in apparent resistivity in mid-May from values below 30 kΩ.m to larger than 500 kΩ.m in mid-May, 
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but within a shorter time interval (one week). This suggests a one-month delay in the seasonal freezing between 2010 

and 2019 and agrees well with borehole information presented in Fig. 3c-e. The sharp increase in apparent resistivity 

in both years is attributed to the abrupt phase change upon freezing in the absence of a significant snow cover during 

April and May. Deeper levels, corresponding to electrode spacing of 1.5 m, 2 m, 2.5 m, and 3 m and investigation 320 

depths of ~ 0.75-1.5 m, exhibit a delayed response, indicating the advancement of the freezing front, which aligns 

with the gradual decrease in the permafrost temperature with depth (see Fig. 3e). 

Conversely, the beginning of the seasonal thawing phase in both years is characterized by a steady decrease in apparent 

resistivity, starting on October 4th and extending until the end of October in 2010, and starting on October 15th and 

continuing until mid-November in 2019. The gradual decrease in apparent resistivity during the thawing season, as 325 

opposed to the abrupt phase change in autumn, can be attributed to the presence of snow cover (Farzamian et al., 

2020). The snow cover acts as an insulating layer, preventing the subsurface from being directly affected by warm air 

signals in spring, thereby dampening the thawing process. Furthermore, the melting snow provides infiltrating water 

into the active layer at close to 0ºC, which refreezes in contact with the colder ground (Scherler et al., 2010). During 

thawing, latent heat is absorbed and the temperature remains at 0 ºC (zero-curtain effect). In contrast, apparent 330 

resistivity observed by the A-ERT system decreases steadily during this period as the liquid water content increases. 

Similar to the temperature evolution, the deeper layers experience a delay in the resistivity decrease compared to 

shallower layers. Notably, this decrease in apparent resistivity was more gradual in 2010 compared to 2019, 

particularly at the beginning of the thawing season, where the resistivity decrease is sharper during October 15-20 

compared to 2019. This is in good agreement with the temperature and snow cover data (Fig. 3).  335 

Aside from the seasonal resistivity changes, the daily apparent resistivity fluctuations during 2010 and 2019 are 

generally small. However, there are notable fluctuations observed in both years, which are associated with brief 

surficial refreezing of near-surface layers during summer or short thawing periods in winter, as reported previously 

by (Farzamian et al., 2020), resulting from short-lived meteorological extreme events with rapid and superficial 

changes in ground temperature around 0 ºC.  340 
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Figure 5: Apparent resistivity data of the A-ERT profile averaged for each electrode spacing for 2010 (top) and 2019 

(bottom). 

3.3 Analysis of inverted resistivity models 345 

3.3.1 2D models 

Figure 6 shows monthly modeled resistivity results for the years 2010 and 2019. The model coverage, derived from 

the Jacobian and calculated with a built-in pyGIMLi function, was plotted as an opacity filter to show where the model 

was more sensitive to the data (higher opacity) and less sensitive to the data (lower opacity). The data utilized in this 

analysis are from the 15th day of each month at 12:00 for both years, showcased side by side for comparison. The 350 

resistivity pattern observed along the A-ERT monitoring transect at the CALM-S site exhibits two distinct resistivity 

zones, and this distinction is evident in both years. The first zone, extending to a maximum depth of approximately 

0.4 m during the summer months in both years, corresponds to the active layer, characterized by substantial resistivity 

changes during freezing and thawing events. The deeper zone captures the permafrost down to a depth of 2 m. 

The top 40 cm, representing the active layer, undergoes the largest resistivity changes primarily during seasonal 355 

freezing and thawing events. In 2010, the most substantial resistivity changes commenced in May when the active 

layer froze. However, in 2019, the substantial resistivity changes associated with seasonal freezing are observed a 
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month later in June, as already detected by borehole data (see Fig. 3c-e). Once the active layer freezes, heat is lost 

from deeper layers (i.e., permafrost zone), reducing unfrozen water content and consequently increasing resistivity in 

the winter months, as observed in both 2010 and 2019. While resistivity models in 2010 are generally similar to those 360 

in 2019 during winter, variations in resistivity values are also evident. For instance, modeling results in September 

and October show an overall more resistive subsurface in 2019 compared to the equivalent period in 2010, which can 

be attributed to cooler ground temperatures on September 15 and October 15, 2019, as seen in Fig. 3c-e. 

The initiation of seasonal thawing is marked by a resistivity drop in November for both years. As the active layer 

thaws and heat flows into the permafrost zone, unfrozen water content increases and subsequently resistivity decreases 365 

are observed in December and January. An interesting episode that shows the relevance of A-ERT data for monitoring 

is the resistivity increase in the active layer in December 2010 following seasonal thawing. This indicates a brief 

surficial refreezing of the near-surface layer during this period, as also evident in the apparent resistivity data. Shallow 

ground temperature data at 5 cm (see Fig. 3c) similarly recorded this brief freezing episode, occurring after subzero 

air temperatures during this period. 370 
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Figure 6. 2D inverted resistivity models showing mid-month resistivity profiles for 2010 (left) and 2019 (right). The 375 

vertical black line denotes the position of the virtual borehole, and the red box denotes the zone of interest. 
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3.3.2 Virtual borehole  

To better interpret temporal patterns in resistivity over time, resistivity values were extracted at a virtual borehole at 

the midpoint of the survey section. Figure 7 shows the evolution of inverted resistivity over time in the virtual borehole 

at the S3,3 location during 2010 and 2019 (see Fig. 6 for the position of the virtual borehole). As in Fig. 6, the model 380 

coverage was plotted as an opacity filter to show where the model was more sensitive to the data (higher opacity) and 

less sensitive to the data (lower opacity). The resistivity values and model sensitivities varied depending on the season. 

In the summer, lower sensitivity at depth is due to preferential electrical current flow through the thawed active layer 

(cf. Herring and Lewkowicz, 2022). Resistivity values in areas of the model with lower sensitivity should therefore 

be interpreted with caution.  385 

There is a good agreement between modeled results from 2010 and 2019 in terms of temporal and vertical resistivity 

values and their variability both during winter and summer. In both years, the highest resistivity values were observed 

in winter and near the permafrost table at depths around 0.40 m. This can be attributed to the cyclic process of water 

infiltration from snow or rain accumulating on top of the permafrost table, which undergoes repeated thawing and 

refreezing, forming an ice-rich layer (see for example Shur et al., 2005). The most drastic resistivity changes in the 390 

active layer occurred during the freezing phases in April 2010 and May 2019, with a one-month lag between the two 

years. The active layer remained frozen until October in both years, except for a brief surficial thawing event between 

May 7th and 14th in 2010. Similarly, resistivity changes near the surface during winter coincided with consecutive 

cooling and warming of the active layer in both years (see Fig. 3). 

Overall, the subsurface down to approximately 0.70 m exhibited lower resistivity values in 2010. This is likely due to 395 

slightly higher ground temperatures at shallower layers, as discussed in section 3.1. The difference becomes more 

pronounced in May and June, with frequent warming events in 2010 that were absent in 2019. Increasing temperatures 

led to higher unfrozen water content and increased ion mobility, resulting in decreased resistivity. Interestingly, the 

slightly lower subsurface temperatures at greater depths (beyond 0.70 m) during October and November 2019 were 

reflected in the resistivity models, resulting in higher resistivity compared to the equivalent period in 2010. 400 

The estimated active layer depth using the maximum gradient method is shown as a red line in Fig. 7. The good 

agreement between the estimated depths and frost probe measurements (black dots) shows that maximum gradients 

are a reliable way to determine thaw layer depth and that A-ERT data can be used to infer real-time progression of 

thaw depth throughout the year. Based on these results, it can be concluded that the active layer at this site remains 

comparatively stable during the summer months in both years, with minor fluctuations ranging between ~0.20 and 405 

0.35 m.  

The small temporal variability in thaw depth can be attributed to the presence of an ice-rich transient layer and 

permafrost table at this site, and to the cool summers that characterize the Maritime Antarctic, which do not heat 

significantly the soil. In January 2010, the average thaw depth was approximately 0.3 m, exhibiting a slight increase 

from late January until mid-March. These fluctuations correspond to higher air temperatures and subsequent active 410 
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layer warming, as evidenced by the shallow ground temperature measurements. The deepening of the active layer is 

followed by a rapid and brief freezing phase in mid-March, induced by subzero air temperatures. As the active layer 

cools and the infiltrating water above the permafrost table potentially refreezes, the active layer thins in late March 

and April, preceding the seasonal freezing. The thawing of the active layer initiates again at the beginning of 

November, with a relatively thinner thaw depth (around 0.2 m) at the start of the thawing season. However, the thaw 415 

depth gradually increases in late December as the active layer warming extends to greater depths, influenced by 

warmer air signals during this period. The abrupt rise in resistivity observed in December coincides with the brief 

active layer freezing occurring in that month. In 2019, the thaw depth is slightly thinner before the seasonal freezing 

(~ 0.1 m compared to the equivalent period in 2010). In contrast to 2010, 2019 showed more frequent brief active 

layer freezing events before seasonal freezing. This could account for a slightly thinner thaw depth in 2019 compared 420 

to the same period in 2010, as these events may lead to the freezing of unfrozen water atop the permafrost table, 

contributing to the shallowing of the active layer. In contrast, A-ERT did not detect any brief active layer thawing 

event in 2019, unlike the occurrence in May 2010. 

 

Figure 7: Inverted resistivities at a virtual borehole in the center of the ERT survey for 2010 (top) and 2019 (bottom) and 425 

interpreted thaw depth. Probed thaw depths are shown. 

3.3.3 Average resistivity in zone of interest 

To gain deeper insight to the resistivity changes within the permafrost zone and to examine the permafrost stability 

after almost a decade, daily and monthly average resistivity within the zone of interest (2<x<7.5 m and 0.5<z<1.5 m, 

see Fig. 6) were calculated and presented in Fig. 8. Box plot analysis was conducted on monthly data to depict the 430 

variability of resistivity within each month. The daily changes in resistivity within the zone of interest (Fig. 8a) align 

well with the ground temperature at a depth of 80 cm (permafrost zone, see Fig. 3e), indicating that resistivity 

variations follow permafrost temperature trends. Generally, there is good agreement between resistivities in 2010 and 

2019 during the summer months and before seasonal freezing in April, as well as the winter period from June to 
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September. During these periods, the resistivity difference is minimal, mirroring the small difference in ground 435 

temperature at 80 cm depth. A significant disparity in average resistivities occurs in May due to a phase change lag 

between 2010 and 2019, as seasonal freezing began about one month earlier in 2010 than it did in 2019. From October 

onward, the daily average resistivity tends to be higher in 2019 and remains elevated towards the end of the year. The 

most substantial difference is observed in October, aligning well with the ground temperature at 80 cm depth, where 

the temperature difference is most pronounced during this period. In the context of monthly resistivity changes, Fig. 440 

8b also reveals that the monthly average resistivities in 2010 and 2019 are quite similar, except during seasonal 

freezing, influenced by a one-month lag, and during the thawing season, influenced by slightly colder permafrost 

temperatures in late 2019. As anticipated, the most significant resistivity changes within each month and throughout 

the year occur during seasonal freezing and thawing events, driven by substantial subsurface resistivity changes during 

phase changes. The ongoing A-ERT monitoring will allow for the calculation of average resistivities at the yearly, 445 

seasonal and monthly intervals, thus potentially providing new parameters that will enable the assessment of long-

term permafrost changes. The analysis of variability parameters, such as those shown in the box-plots will allow for 

characterizing extreme melt or cooling events and assess their impacts on the ground thermal regime.  

 

Figure 8. Average resistivity within the zone of interest (2<x<7.5 m and 0.5<z<1.5 m) for (a) all datasets; (b) grouped by 450 

month. The zone of interest is plotted in Fig. 6.  

4 Discussion  

The analysis of A-ERT data reveals predominantly good quality, with only a few problematic measurements observed 

during winter (Fig. 4) when subsurface freezing occurs and electrode contact may consequently be poor. However, 

https://doi.org/10.5194/egusphere-2023-2908
Preprint. Discussion started: 8 January 2024
c© Author(s) 2024. CC BY 4.0 License.



21 
 

the small number of bad measurements does not affect the real-time monitoring of subsurface resistivity and, 455 

consequently, thaw depth progression. The applied inversion processes allow for spatiotemporal mapping of 

subsurface, providing better insights on the impact of seasonal freezing and thawing as well as brief active layer 

freezing and thawing events on active layer and permafrost dynamics. The depth of the maximum resistivity gradient 

correlated well with probed thaw depth, demonstrating that A-ERT can be used to accurately determine thaw depths 

over time. It is important to note that the resolution of thaw depth using this method depends on the acquisition 460 

parameters (e.g., electrode spacing and array type) that govern the resolution capabilities of the survey, and also how 

finely the model is discretized. In this case, the cell heights in the top 0.4 m of the model were between 5-7 cm, with 

smaller cell sizes near the ground surface and gradually larger cells towards the base of the model. 

The consistent patterns of resistivity changes observed during the seasonal freezing and thawing events in both years 

indicate that the sharp and rapid rise in resistivity (active layer freezing) during winter, followed by a gradual and 465 

smoother resistivity change over a longer period of time (active layer thawing), are likely typical for this site. These 

patterns can be attributed to the dynamics of snow cover and ground moisture, which were well-resolved by A-ERT 

in both observation periods. The A-ERT modeling results also reveal a consistently stable active layer at this site 

throughout the summer months in both years, with slight fluctuations within the range of approximately 0.20 to 0.35 

m. However, the active layer appears slightly thinner and more resistive in early 2019. This can be attributed to slightly 470 

colder air and surface temperatures in early 2019, along with the impact of frequent brief freezing of the active layer 

before seasonal freezing in 2019, as detected by A-ERT. The ability of the A-ERT system to capture these rapid 

changes in the active layer, as a result of short-lived meteorological extreme events (see Farzamian et al., 2020), 

reaffirms the significance of the automatic ERT monitoring system in recording continuous resistivity changes. 

The A-ERT setup provided valuable insights into the permafrost condition and evolution of ground ice at this site. 475 

Our detailed analysis indicates that there is no significant change in permafrost (e.g., ice degradation) after almost a 

decade. As shown, most of the differences in resistivity between 2010 and 2019 can be attributed to seasonal 

temperature variations and a phase change lag between these years. These findings align with the non-statistical 

insignificant warming trend in mean annual near-surface temperatures in the South Shetlands (0.028°C/year) from 

2006 to 2020, as reported by Hrbacek et al. (2023). We anticipate that the site-specific conditions of our study site, 480 

characterized by an ice-rich permafrost table (confirmed by A-ERT data and cores), contributed to the stability of 

permafrost against potential degradation. In order to more accurately assess ice content at A-ERT monitoring sites, 

future work could incorporate additional complementary geophysical surveys, such as seismic surveys, which can 

significantly enhance our ability to quantify ice content (Mollaret et al., 2020). For example, seismic travel times can 

be used in a four-phase model (Hauck et al., 2008; 2011) to quantify water, air, and ice contents for a given porosity 485 

model. The joint application of ERT and seismic reflection data, combined with petrophysical joint inversion 

approaches (Wagner et al., 2019, Mollaret et al., 2020) have enabled quantitative estimates of water, air, ice, and rock 

volumes. These techniques could further improve ice content quantification and monitoring of its temporal evolution. 
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Compared to current traditional approaches such as boreholes and mechanical probing, A-ERT offers several practical 

advantages. Boreholes only provide limited 1D depth profiles at specific locations, which is insufficient to capture the 490 

variability observed in a spatial context. In addition, and in our case, the thaw depth variability in the 0.2-0.35 m range, 

seen in the resistivity at a data plotted as virtual borehole, cannot be reflected in the ground temperature borehole data 

due to the lack of sensors in these depths. Furthermore, borehole data cannot offer the insights into the spatial and 

temporal variability of ground ice needed to evaluate permafrost stability. On the other hand, while mechanical 

probing can be used to determine the spatial variability of thaw depth over larger areas, it becomes impractical in 495 

many Antarctic regions with coarse and bouldery sediments or thick active layers. Although this limitation does not 

apply to this particular site, manual probing still does not provide real-time tracking of thaw depth as A-ERT did in 

this site as shown in Fig. 7. Moreover, logistical challenges and adverse weather conditions can impede manual 

probing at consistent time intervals, leading to biased information regarding thaw depth dynamics. These same 

logistical and weather challenges also apply to manually repeating ERT measurements, as reported by Etzelmüller et 500 

al. (2020), making the A-ERT method also advantageous over traditional manual ERT monitoring. 

5 Conclusion and outlook 

Geophysical techniques, especially ERT measurements, have become increasingly common in permafrost science to 

study active layer and permafrost dynamics. Low-cost and low-power monitoring resistivity systems, such as the A-

ERT system presented in this study, offer a unique means to investigate detailed freezing and thawing processes in 505 

permafrost regions in remote areas. This system can be operated with high temporal frequency, enabling the study of 

short-term meteorological events on permafrost and active layer dynamics, as well as consistent analysis of long-term 

changes. Our detailed investigation of the A-ERT data and inversion modeling results shows that the A-ERT system 

detected the seasonal and brief surficial active-layer freezing and thawing events, as well as the phase change lag of 

almost one month between 2010 and 2019 during seasonal freezing. Without automated ERT monitoring, an 510 

identification of these events and the real-time progression of the thaw depth would not be possible. With the 

continuation of A-ERT measurements for long-term monitoring at Crater Lake, as well as on other sites in Antarctica 

(we have recently installed A-ERT systems in Livingston, King George and James Ross islands), future calculations 

of monthly and even yearly resistivity changes within the permafrost zone can be conducted to assess permafrost 

stability. We propose that electrical resistivity could be used as a new Essential Climate Variable for evaluating long-515 

term permafrost changes and would be a valuable complement to other climate and borehole data. 

Processing large resistivity time series data in such harsh environments needs to be carefully executed before any 

interpretation. The processing tool presented in this work, supported by the companion Jupyter Notebook (available 

at https://github.com/teddiherring/AERT), forms the basis of a semi-autonomous high-throughput processing for 

dense temporal datasets provided by A-ERT systems. The implemented filtering tool processes all A-ERT data 520 

consistently using the same criteria, identifying and removing bad measurements, ensuring efficient handling of a 

large number of A-ERT data and facilitating the prompt extraction of key information. The inversion process was then 

carried out using the open-source pyGIMLi library, and further processing was performed afterward to extract key 
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information from a large amount of A-ERT data efficiently and quickly to study the active layer and permafrost 

dynamics. For example, inverted resistivity plots at a virtual borehole enabled an efficient assessment of changing site 525 

conditions over short and long-time scales and allowed for comparison to measured temperatures and manual probing. 

The gradient method applied in this study was an efficient way to delineate the interface between the thawed surface 

layer and underlying frozen ground. Calculating resistivity averages over a zone of interest (i.e., permafrost zone) also 

enhanced the assessment of permafrost conditions after almost a decade. Future work could incorporate additional 

information, like borehole temperatures, probed thaw depths, or other geophysical data, to constrain the inversion and 530 

increase model reliability. Furthermore, co-located seismic datasets could be used to quantify subsurface ice content. 

Antarctic ice-free regions are facing rapid changes, either forced by changes in solar radiation or by temperatures, 

snow, or rainfall events. Consequently, the processes affecting the active layer and permafrost are expected to undergo 

changes, potentially generating a cascade of effects mainly associated with surface and subsurface hydrological 

changes and geomorphic dynamics with potential impacts on terrestrial ecosystems and infrastructure, as well as 535 

potentially on still poorly assessed, nearshore and lacustrine environments. In this context, future installations of A-

ERT monitoring systems will contribute to gaining deeper insights into permafrost and active layer dynamics in 

Antarctica and permafrost regions globally. 
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